Dealing with Superfluous Numbers of Agents*

Dionysis Kalofonos
University Carlos III of Madrid, Spain
dkalofon@inf.uc3m.es

Abstract

During problem solving the set of actions considered by the
planner results from the instantiation of operators on the con-
stants appearing in the problem description. In multi-agent
scenarios the problem description is also populated with the
agents appearing in the multi-agent society. Hence those con-
stants result in even larger action sets. As the number of
actions increases, so does the branching factor of the search
space, hence planners employing systematic search methods
have been observed to scale poorly. Moreover, it is very of-
ten the case that even the simpler single-agent planning prob-
lems are unsolvable when the problem description is popu-
lated with hundreds of agents. The goal we set in this research
is to achieve constant planning performance regardless of the
number of agents participating in the society. In this paper we
discuss the search space representation and the search method
applied to achieve our goal.

Introduction

A STRIPS planning problem is a tuple P = (A, 0, I,G)
where A is a set of atoms, O is a set of ground operators,
I C Aisthe initial state and G C A is the goal state. The set
O is populated through a process named operator instantia-
tion which usually takes place before planning begins. Dur-
ing this process the operator schemata forming the domain
description are instantiated on the constants appearing in the
problem description. In the STRIPS formalism the resulting
ground operators (which from now on we will call them ac-
tions) are tuples of the form a = (Prec, Del, Add) where
the Prec, Del, and Add sets are the preconditions, delete ef-
fects, and add effects of the action respectively. The actions
that form the O set define the state transitions that can take
place in the domain, and the larger the O is the wider the
search space becomes. Specifically, each such action a € O
defines the transition function:

a(s) = s\ Del U Add (nH

Given a specific domain, the change in the cardinality of
the set O between problems is the result only of the number
of constants appearing in those problems, as they all share
the same set of operator schemata. Formally, given a domain

*This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05.

Timothy J. Norman
University of Aberdeen, UK
t.j.norman@abdn.ac.uk

and a problem description we can define an upper bound for
the cardinality of the set O to be

ol >

Yopedomain

arity(op) * |Constants| (2)

where op is an operator schema, domain is the domain
description (a set of operator schemata), and arity(op) is
the number of parameters that operator op has.

In practice, the constraints that arise through the type of
an operator’s parameters as well as the semantics of the op-
erator restrict the values that the parameters can take. Hence
the cardinality of the set O rarely reaches the above limit.
For instance in the Blocks-world domain the operator (stack
7x - block ?y - block) can be instantiated to constants of type
block only. Moreover, instantiations of the form (stack A A)
are discarded as the domain semantics do not allow a block
to be stack on itself.

Although the above limit is rarely reached, the O sets
emerging from the planning problems are significantly large.
The situation is even worst in multi-agent planning where
problem descriptions are populated with constants repre-
senting the agents that appear in the society. And since the
main interest is in large such societies (Jung 2003) the num-
ber of constants and as a result the cardinality of O increases
by several orders of magnitude.

At this point let us investigate how some state of the art
planners behave as the cardinality of set O increases. Fig-
ure 1 portrays their performance on a Blocks-world problem
with

initial state: (clear f) (ontable a) (on b a) (on ¢ b) (on d ¢)
(on e d) (on fe) (handempty al)

goal state: (ond a) (onae)(oneb) (onbf) (onfc)

Please note that the (handempty) atom is given a param-
eter representing the actual arm that is free. In the same
way, actions are also given an extra parameter in order to
reflect which arm performs the corresponding moves. This
is a way of introducing agents in this domain. So we have
run the planners on the same block configurations in initial
and goal states, but with a number of arms varying from 1 to
140.

In Graphplan’s (Blum and Furst 1997) performance we
can clearly see how the size of O affects the performance of

ICAPS'08 Multiagent Planning Workshop

Blocks World

CPU Secs

0 20 40 60 80 100 120 140
Robot arms
Realplan o Graphplan [FF A
STAN + PP X

Figure 1: Performance of existing planners.

systematic search. The search scales poorly as larger O sets
result in a larger branching factor in the search space. Re-
alPlan (Srivastava, Kambhampati, and Do 2001) is a plan-
ner that attacks this problem by decoupling causal and re-
source reasoning into two independent phases. Hence dur-
ing causal reasoning an abstract plan is formed which is in-
stantiated during a resource reasoning phase. However, large
sets of constants affect the performance of the scheduler as
it also performs a search. IPP (Koehler 1999) performs met-
ric planning which treats large number of resources numer-
ically. However, agents cannot be modeled as a numeric
resource as each agent is a unique entity. Which leads us
to the observation that we can neither treat agents as sym-
metric entities (STAN (Long and Fox 1999)) as the diversity
in their capabilities and their commitments hinders such a
classification. Finally, we include FF (Hoffmann and Nebel
2001) which is a heuristic planner that we would expect to
scale better as the heuristic estimate is not affected by the
number of constants appearing in the problem description.
However, all the actions differing only on the agent instanti-
ation appear at the same level in the search tree and are given
the same heuristic estimate. Hence the heuristic distribution
is noisy and the planner is not well informed.

In our research we set the goal of achieving constant plan-
ning performance regardless of the number of agents ap-
pearing in the domain description. We focus specifically on
agents in order to simplify the discussion but the approach
can be easily extended to cover all the constants that can be
defined as resources'. In this paper we introduce a planner
that meets the above objective.

This paper is organised as follows. We start our discus-
sion by looking at an agent classification method based on
the capabilities of the agents and an action analysis method
applied on the delete effects of the actions. We then focus
on the search space representation and the search method
that form our planner. Subsequently, we present an intu-
itive heuristic that deals with superfluous numbers of agents.
Having finished with the presentation of the planner we em-
pirically evaluate it and then we conclude this paper.

"For a definition of the term resource please consult (Srivastava,
Kambhampati, and Do 2001).

Al [B] —» [B]

(define (problem blocks-simplest)

(:domain blocks-world)

(:objects a b al a2 arm)

(:init (block a) (ontable a) (clear a)
(block b) (ontable b) (clear b)
(handempty al) (agent al) (class al arm)
(handempty a2) (agent a2) (class a2 arm))

(:goal (on a b)))

Figure 2: A problem description of the Blocks-world do-
main with two arms.

arm

—
Al [B] —» [B

(define (problem blocks-simplest)

(:domain blocks-world)
(:objects a b al a2 arm)
(:init (block a) (ontable a) (clear a)
(block b) (ontable b) (clear b)
(handempty arm) (agent arm) (class arm arm))

(:goal (on a b)))

Figure 3: A lifted problem description of the Blocks-world
domain.

Agent classification and action analysis

The purpose of agent classification is twofold:

1. To classify agents based on their capabilities. Within
a multi-agent society, agents of different capabilities
form teams that promote collaborative effort towards the
achievement of a set of goals (Shehory and Kraus 1998).
Within such an environment knowledge of who can do
what is very welcome, and such a classification makes
this knowledge available.

2. To allow the planner of each agent to generate a lifted

search space where instead of instantiating operator
schemata on specific agents, operator schemata are instan-
tiated on classes of agents. We will explain this process
in detail further on.

The process of agent classification can be easily auto-
mated as most of the multi-agent frameworks provide a facil-
ity where agents register their capabilities (services in multi-
agent terminology) (Kalofonos et al. 2006). Hence for each
capability registered online the agent can create a list of
agents that can provide this capability. However, in this pa-
per we decide to focus on a hand written way of capturing
such a classification within a problem description which al-

ICAPS'08 Multiagent Planning Workshop

lows for easier presentation. Moreover, we focus on how
such a classification affects the search space of the planner,
as our main interest in this paper is on the search method and
how it scales.

At this point let us have a look at Figure 2 which portrays
a problem description of the Blocks-world domain with two
arms. Those arms are captured as agents using the (agent
7x) atom, and classified as ‘arm’ using the (class ?7x ?y)
atom. Basically, what this means for the planner is the set
arm = {al, a2}. Hence now, we can remove from the prob-
lem description all the constants referring to agents and re-
place them with the identifier of the set they belong to, in this
case resulting to the problem description shown in Figure 3.
Furthermore, during operator instantiation the planner will
instantiate operator schemata on set identifiers instead of the
actual agent references. In this case the set associated with
the set identifier forms the domain of the action’s parameter
instantiated to the corresponding identifier (Prosser 1993).
For example after instantiating the ‘stack’ operator schema
on the abstract problem description the action (stack arm A
B) will be formed where the set arm = {al, a2} forms the
domain of the first parameter of the action.

As a result, the cardinality of the set O is affected by the
diversity on agents’ capabilities rather than the agent pop-
ulation, i.e. by the number of such sets. However if there
is one to one mapping between agents and capabilities then
this would make such a classification irrelevant.

Let us make one final remark on this topic by saying that
such a classification can be easily extended over all the con-
stants appearing in the domain description. Having sets of
constants with common characteristics allows the planner to
expand a search space over sets of constants instead of spe-
cific constants, resulting in a search space with a smaller
branching factor. Such a classification can be automated
with domain analysis tools (Fox and Long 1998). For in-
stance in the gripper domain all the balls appearing in room
A could be classified in the set ballsA = {a1,...,a,}. Fi-
nally, although in this research we make the assumption that
each action has only one such a lifted parameter for simplic-
ity, such an assumption can be easily relaxed.

Let us now shift our attention to the analysis applied on
actions. However, before we carry on let us introduce some
terminology.

Definition 1 An atom/action is lifted if some of the
atom’s/action’s parameters are instantiated to a set identi-

fier.

Definition 2 An atom/action is grounded if none of the
atom’s/action’s parameters are instantiated to a set identi-

fier.

Each time an operator schema is instantiated the resulting
action is analysed. The analysis is focused on the delete
effects of each action and particularly the atoms appearing in
the delete set are marked as lifted or grounded based on the
instantiation of their parameters. This representation is used
during the inference of action conflicts which we discuss in
detail later on.

stack arm a b onab
stack arm b a onba
pick-up arm a

pick-up arm b

+

pick-up arm a - holding arm a noop olding arm a
pick—uI‘) arm _b _f' holdin; arm b noop olding arm b
clear a noop clear & noop clear a
ontable a noop ontable a noop ontable a
clear b noop clear b noop clear b
ontabled noop ontable b noop ontable b
handempty arm noop handempty arm noop handempty arm
Py Ay Py Az P

Figure 4: A lifted planning graph (some nodes and edges are
omitted for clarity).

The search space

The search space used by our planner is based on the lifted
planning graph (Srivastava, Kambhampati, and Do 2001).
The lifted planning graph captures only the causal relations
of actions, however we augment this representation by pop-
ulating the graph with binary constraints and exclusivity re-
lations. Hence the resulting graph captures the causal rela-
tions of actions, the action conflicts over lifted atoms, and
the action conflicts over grounded atoms.

In detail, the lifted planning graph is a layered graph, with
each layer (called time-step) consisting of a set of lifted and
grounded atoms and a set of lifted and grounded actions (see
Figure 4). The atoms that appear at the first time-step of the
lifted planning graph (Figure 4:P;) are the atoms that form
the initial state generated during agent classification as pre-
viously discussed. Having placed the atoms into the first
time-step, the planner populates the action set with the ac-
tions whose preconditions are present in the layer. Since the
time-step consists of grounded and lifted atoms (for instance
in Figure 4: Py, ‘clear a’ is grounded while ‘handempty arm’
is lifted), some of the actions are grounded while others are
lifted (for instance in Figure 4: A1, ‘noop clear a’ is grounded
while ‘pick-up arm a’ is lifted).

The nodes placed in the lifted planning graph are con-
nected with three types of edge (Figure 4).

Precondition edges: The precondition edges connect an
action node with the atoms of the time-step that form the
preconditions of the action.

Delete edges: The delete edges connect the action nodes of
a time-step n with the atoms appearing at time-step n + 1
that constitute the negative effects of the actions.

Add edges: The add edges connect the action nodes of a
time-step n with the atoms appearing at time-step n + 1
that constitute the positive effects of the actions.

In the case of the classic lifted planning graph at this

ICAPS'08 Multiagent Planning Workshop

point we would stop as all the conflicts between actions are
ignored. In our representation though, the lifted planning
graph is populated with binary constraints and exclusivity
relations through the following rules which are extensions
of the corresponding rules found in Graphplan:

Rule of competing needs: The rule states that two actions
are marked as mutually exclusive if a precondition of the
first is mutually exclusive with a precondition of the sec-
ond. The extension we have applied is that the actions
under consideration inherit the conflict of their precon-
ditions; i.e. when the preconditions are connected with
an exclusivity relation the actions are connected with the
same relation, while when the preconditions are con-
nected with a binary constraint the actions are also con-
nected with a binary constraint.

Rule of interference: The rule states that two actions are
marked as mutually exclusive if one deletes a precondi-
tion or positive effect of the other. We extend this rule
by utilising the representation of the delete effects of ac-
tions previously discussed. Hence when the conflict arises
over a lifted delete effect the two actions are linked with
a binary constraint, while when the conflict arises over a
grounded delete effect the two actions are connected with
an exclusivity relation.

As with the action conflicts, the atoms are marked with
exclusivity relations and binary constraints. The two types
of conflict are captured through the following rule:

Rule of inconsistent support: Two atoms are marked as
mutually exclusive if all the actions that achieve the first
are mutually exclusive to all the actions that achieve the
second. Since we have two types of action conflict (binary
constraints and exclusivity relations) the test operates in
the following fashion:

e When all the pairs of actions that achieve the atoms in
question are linked with an exclusivity relation, the two
atoms are linked with an exclusivity relation as well.

o If there is at least one pair of actions that achieve the
atoms in question which are connected with a binary
constraint, then the two atoms are linked with a binary
constraint.

o If there is at least one unconnected pair of actions that
achieve the atoms in question, then the atoms are left
unconnected.

Consequently, two actions may be connected with both
types of conflict, while two atoms of a given layer with only
one. The difference between binary constraints and exclu-
sivity relations is that two actions may be applied in parallel
if the binary constraint is relaxed, but they can never be ap-
plied in parallel when an exclusivity relation holds. Hence,
when both conflicts emerge between two actions the exclu-
sivity relation has higher precedence over the binary con-
straint and the planner never tries to relax the binary con-
straint in that case.

The search algorithm

The search algorithm is a direct extension of the algorithm
used in Graphplan. The search backtracks in a chronologi-

1: domain-size « 2; conflicts < 0; backjumping < FALSE;
plan < a time-step containing the goals of the problem;

2:
3: FUNCTION search(time-step): Boolean
4: BEGIN
5: if time-step < O then return TRUE;
6: atom-layer «+ goal set in the first layer of the plan;
7: action-layer « action set in the first layer of the plan;
8: goal « an unsupported atom in atom-layer ;
9: actions-add « set of actions from graphftime-step —1] that support goal;
10: for all act € actions-add do
11: mutex-free < mutexFree(action-layer | J {act});
12: if mutex-free = FALSE then continue;
13: backjumping < FALSE; # progressing #
14: action-layer « action-layer |J {act};
15: if domain-size < |action-layer| then
16: domain-size < |action-layer]|;
17: domain < {y1,...,Yyn : y € domain of act, n = domain-size };
18: repeat
19: if backjumping = TRUE then
20: if conflicts # @ A act # z1 : € conflicts then
21: result « FALSE;
22: break;
23: else
24 conflicts < conflicts \ {z1};
25: backjumping < FALSE; # progressing #
26: if the instance of goal # L then
27: domain « domain (") goal instance;
28: act is instantiated to y1 : y1 € domain;
29: domain « domain \ {y1};
30: if consistent(action-layer) = FALSE then continue;
consistent(-) populates conflicts
31: if there are unsupported atoms in atom-layer then
32: result «— search(time-step);
33: else
34 plan[time-step —1] « preconditions of the actions in action-
layer;
35: result < search(time-step —1);
36: if result = FALSE then remove the first layer from plan;
37: if result = TRUE then break;
38: until domain = (;
39: if result = TRUE then break;
40: else action-layer « action-layer \{act};

41: if result = FALSE then backjumping < TRUE;

with the result being false and having exhausted all
the actions in the current level and their domains, we set backjumping to true and
we trace our steps back until the conditions for progressing are met again, that is
either picking up a new action (first progressing comment), or trying a new value
for an action in the conflict set (second progressing comment) #

472 return result;
43: END

Figure 5: Pseudo-code description of the search method.

ICAPS'08 Multiagent Planning Workshop

cal fashion over action selections while it is capable of per-
forming conflict-directed backjumping (Prosser 1993) over
agent allocations. The search traverses the lifted planning
graph layer by layer starting from the goals and going back-
wards. Figure 5 presents a pseudo-code description of the
main function of the algorithm.

The parameter of the function is the index of the time-
step that forms the frontier of the search, initially set to the
last time-step of the planning graph (Figure 5:3). When the
search reaches time-step zero it returns successfully (Figure
5:5). The function starts by initialising atom-layer to the
layer of the plan that contains the current goal set (Figure
5:6), action-layer to the layer of the plan where the actions
achieving the above goals should be placed (Figure 5:7),
goal to an atom from atom-layer (Figure 5:8), and actions-
add to the set of actions from the graph that add the goal
(Figure 5:9).

The function consists of two nested loops, the first (Fig-
ure 5:10 — 40) iterates through the actions that support the
goal while the second (Figure 5:18 — 38) iterates through the
values of the domain of the last selected action.

For each action selected, first we check if the action is
mutex-free with all the actions previously selected (Figure
5:11). It is very important to note that the mutex-free check
considers only the exclusivity relations that appear among
the actions. If the action set is not mutex-free we move on
directly to the next available action or we backtrack if the
set is exhausted (Figure 5:12). If the mutex-free test returns
successfully, the picked up action is added to the action layer
(Figure 5:14), and the domain of the action is obtained (Fig-
ure 5:17).

At this point let us have a look at Figure 5:15 — 16. Using
this test we set the variable ‘domain-size’ to the size of the
largest local set of actions considered so far in the search.
This value is used to restrict the size of the domain of each
action considered to a subset of size equal to the value of
‘domain-size’. The concept behind this test is that given a set
of conflicting actions those actions can be performed in par-
allel if they are allocated (in the worst case) a unique agent
as the binary constraints will be satisfied. Hence consider-
ing any set of agents larger than the current set of actions is
redundant. We will investigate this in more detail later on.

The second loop expands over lines 18 — 38 of Figure 5.
At first the domain of the last picked up action is further re-
fined. When the action achieves a goal that is lifted, the do-
main of the action becomes the intersection of the original
set and the set consisting only of the goal allocation (Fig-
ure 5:26 — 27), thus the action can be given only one value
which is that of the goal it supports. Otherwise the domain
is left intact. In this way we ensure that the causal depen-
dencies between actions are preserved as their allocations
are propagated through their preconditions. Subsequently
a constraints consistency check is performed (Figure 5:30).
The check fails when violated constraints or uninstantiated
actions are met; actions might be uninstantiated at this point
only if their domain is empty due to the fact that it has been
exhausted through the previous trials, or the intersection of
lines 26 — 27 is empty, or when there are no agents for a
given action. During this check whenever a constraint vio-

lation is met the target action node is stored in the conflict
set of the newly instantiated action. During backtracking
the algorithm tries a new agent allocation for a given action
only when the action appears in the conflict set (Figure 5:24
— 25). Otherwise the algorithm immediately backtracks fur-
ther (backjumps) ignoring the remaining agent allocations
for an action not appearing in the conflict set (Figure 5:20
— 22). This decision can be justified by considering the fol-
lowing. If an action does not appear in the conflict set then
this action’s allocation does not interfere with any alloca-
tions made subsequently. Hence the action’s allocation is
not the reason why the search could not progress from the
last allocation made. Hence trying a new value for this ac-
tion is pointless. This is the main observation behind CBJ
(Prosser 1993).

The following code fragment in lines 31 — 36 is the recur-
sive point of the algorithm. The planner moves to the next
unsupported atom from the current atom-layer if one exists
(Figure 5:32). Otherwise, it creates a new atom-layer by
collecting the preconditions of the selected actions (Figure
5:34) and starts working on the newly created layer (Figure
5:35).

It is important to pinpoint the reasons why an action may
end in the conflict set.

e An action already appearing in the layer is given a value
that violates the constraint with the newly inserted into the
layer action. That action is added into the conflict set as
the search might have to revisit it and change its value.

e An action is added in the conflict set if it is the root of a
dead-end tree. Let us investigate this in more detail. As
we said above in the case in which an action supports a
lifted goal inherits the value of the goal. This is done in
order to preserve the causal links between actions. If this
allocation leads to a dead-end the value of that specific
goal needs to be undone. However, that goal is a precon-
dition of some other action and so on. Hence we need to
follow this action-goal path until we find the action that
was first instantiated to this erroneous value, i.e. the root
of the tree. The action located at the root of this tree is
placed in the conflict set. However, this process of travers-
ing up the tree every time a conflict is met is expensive,
hence in practice every time an action inherits the value
of a goal it also inherits a reference to the action that is
the root of that specific tree.

Resource curtailment

In the previous section we briefly discussed the fragment of
Figure 5:15 — 16. We stated that the purpose of this frag-
ment is to limit the size of the domain of each action to the
size of the largest local set of actions considered so far in
the search. This is an intuitive heuristic that relies on the
following observation.

Let us suppose that action z is the last action inserted into
set A. Let us also assume that action x is on a path leading to
the goals and that the domain of x is Dom = {a1, ..., ay }.
Since action z is on a valid path, = can be given a value from
the set Dom that satisfies all the constraints with the actions
in A that is linked against. The value given to = will have an

ICAPS'08 Multiagent Planning Workshop

index k : 1 < k < w. In the worst case, all the actions in A
are connected with a binary constraint hence a unique value
allocation for each action is needed for all the constraints
to be satisfied. Consequently, the highest value given to k
will never exceed the cardinality of the action set considered
(k < |A]), and let us suppose that in this case k is indeed
given the highest value (k = |A|). In this setting the search
would have to try out the first &£ values from Dom before the
right assignment is found that meets all the constraints, i.e.
the set tried out is Dy = {ay,...,ar : a € Dom}.

Now let us assume that x is on a path that is a dead-end
and that the search will need to backtrack over z. The search
can start backtracking only after all the values from the set
Dom have been tried out. In this case the search will try out
the values D1 = {a1,...,a; : a € Dom} as well as the
values Dy = {ag4t1,...,0y : a € Dom}.

D1 is a set whose size is restricted by the number of con-
straints linking the actions considered. D, is a result of
the equation Dy = Dom \ D; hence its size is |Ds| =
|Dom| — | D4|. It is obvious at this point that the size of Dy
will increase as Dom becomes larger, i.e. more agents are
inserted in the domain.

With resource curtailment we aim at the restriction of the
size of the set Do. For this purpose we use the variable
‘domain-size’ (ds for sort) and we set it to the cardinality
of the largest local set of actions considered so far, i.e

ds = VA maz|A] 3)
This defines an upper bound for & of the form

1<k<ds @)
When the number of agents significantly exceeds ds the
upper bound will usually be significantly smaller than w
1<k<ds<w (@)
and

Dom ={ay,...,0k,...,0ds,--,Qw} ©)

while when ds exceeds the number of agents the whole
set Dom is considered, i.e.

1<k<ds=w 7)
and
Dom ={ay,...,ak,...,¢u} 8
which is usually the case when the agent population is
very small.

Given a set of actions X and ds, the sets D; and D5 for
the set X are defined as shown below.

Dlzial,...,apﬂ}, } | |
o Dy = AX|+15- -+ Ads if | X| < ds
f(X) - D1 = {al, . .,ads}, (9)

Dy =10 if | X| = ds

In this case the remaining values from Dom are dis-
carded. The set of the remaining values can be defined as

Blocks World Elevator

Oz + 0 Oz +0
Oz + 0.02 0x + 0
Oz + 0.02 0z + 0
Oz + 0.01 Ox + 0.01
Oz + 0.06 Oz + 0.01
Oz + 0.08 Oz + 0.01
Ox + 0.12 Oz + 0.01
Oz + 0.27 Oz + 0.01
Oz + 0.25 Ox + 0.06
Oz + 0.38 Ox + 0.06
Oz + 0.80 Oz + 0.06
Oz + 0.80 Ox + 0.07
Ox + 1.26 Oz + 0.07
Oz + 6.29 —

0.01z + 25.45 —
Oz + 1.73 —

Table 1: Regression lines of the data collected by running
the planner on each problem with the number of agents vary-
ing from 2-200.

Dy = Dom \ (Dy | | D») (10)

Since both D4 and D5 are bound to a value that does not
change with the number of agents present in the domain, the
search is not going to be affected by the size of the agent
population. Instead the search is affected only by the size of
the action sets considered.

Empirical evaluation

The evaluation is targeted towards the search method of
the planner, as this is the main focus of the paper. Hence
throughout the evaluation instead of referring directly to the
planner as a whole we investigate the following flavours of
the planner.

CBJ+RC: This is the planner on its fullest. This flavour
consists of the search method described in this paper as
well as the resource curtailment heuristic.

CBJ: This flavour consists of the search method discussed
in this paper, but without the resource curtailment heuris-
tic.

CB+RC: This flavour consists of the search method dis-
cussed in this paper without the fragment related with
backjumping (lines 19 — 25 of Figure 5). Hence this
search backtracks in a chronological fashion over both
action selections and value allocations. Moreover, this
method makes use of the resource curtailment heuristic.

CB: This flavour consists of the search method without
backjumping as discussed above, and without the re-
source curtailment heuristic. This flavour is identical to
the search performed by Graphplan.

The domains we use in this evaluation are extensions of
the Elevator, Logistics and Blocks-world from IPC,, Grip-
per from IPC;, and Shuttle which is distributed with the Re-
alplan planner. The extension we applied is the introduction

ICAPS'08 Multiagent Planning Workshop

Blocks World Gripper

100 T N 0.08 ‘
= 3] 0.07 |- 3] B
5 10f x 3 0.06 |- -
2 £ * g 1
E: t) © i 5 005 |- il
b4 e * & A
3 F P @9 % 3 * 5 00r i
2 i ? o O + A i S 003F o B
3} 0.1 ¢ IR ® e+t 3
E O XXX x A A A 002 ® g
Ho% @ % x & A A A N]
0.0124 A A | ! ! ! | ! | | L | 0.01 -
3-1 4-0 4-1 42 50 51 52 6:0 6-1 62 7-0 7-1 7-2 8-0 8-1 82
Problems
Realplan o Graphplan [FF A
STAN + PP X CBI+RC * CBI+RC o CBJ + CB O CB+RC x
Figure 6: Comparison of the performance of the planners Figure 9: Comparison of the performance of the four search
on problems from the Blocks-world domain (16 problems in flavours (20 problems in total).
total).
Shuttle
Blocks World
35 ‘)
b 30 | o
- X
25 | QoA
” J ” 5
3 4 § 07 X |
2 = 15 B
o 7 &} =
J 10 - 5 B B
i sk g B J
& ® x X
0F—5 ®E Ky @ S S S S SR S S G S G S S
140 0 5 10 15 20
Robot arms Cranes & Shuttles
Realplan o Graphplan [FF A CBJ+RC © CBJ + CB 0O CB+RC %
STAN + PP X CBJ+RC *

Figure 10: Comparison of the performance of the four

Figure 7: Comparison of the performance of the planners on search flavours (20 problems in total).

the shuffle domain instance (140 problems in total).

Blocks World Logistics
25 T T |) 180 - & T 7
) B R0 > 160 - |
i g BB 140 i
\g@&®®¢$¢¢¢eﬂst$v 2 120 F 7
§ 151 i g
1 %] 2] -
=) 2 il
53 I 7 6 X
05 i i
% & ¢ & ? + <+ 4 4 ? + 4 $ + F
0 % I I I
0 5 10 15 20 5 10 15 20
Robot arms Trucks per city
CBI4RC © CBI + CB O CB+RC X CBI+RC © CBI + B O CB+RC %
Figure 8: Comparison of the performance of the four search Figure 11: Comparison of the performance of the four
flavours (20 problems in total). search flavours (20 problems in total).

ICAPS'08 Multiagent Planning Workshop

Elevator

0.008 B

0.006 — B

CPU Secs

0.004 - B

0.002 B

O +
0

wF

10 15 20
Lifts
CBJ+RC o CB] + CB O CB+RC X

Figure 12: Comparison of the performance of the four
search flavours (20 problems in total).

of numerous agents. The fact that the domains are trivial
to solve allows for the exposure of the complexity due to a
large branching factor in the search space.

We evaluated the four flavours of the planner presented
above in the following way. We picked up a random prob-
lem from each of the domains presented above, and we made
numerous versions of it, each version consisting of a differ-
ent number of agents. Then we run the planner on those
problems and we collected the results. Before we move on,
we would like to remind the reader that in this research we
are not only interested in good performance but we have set
the goal of achieving constant performance per problem re-
gardless of the number of agents appearing in it. Let us now
present the results.

In Figure 6 we present the results from the comparison
of the performance of Realplan, STAN, Graphplan, IPP, FF,
and CBJ+RC in various problems of the Blocks-world do-
main with a constant number of agents set to two. This is
the only case in which we do that as we want to show that
the planner still scales exponentially as the difficulty of the
problem increases. Figure 7 is the figure we have already
seen in the introduction of this paper, in which we have
added the results from running CBJ+RC. We have done this
in order to place the planner in context with existing work,
and to show that even though the problem is trivial to solve
indeed the number of agents appearing in it can transform
the problem into a hard one. Hence constant performance is
very beneficial.

In table 1 we summarise the lines of the data we have
collected by running the planner on several problems from
the Blocks-world and Elevator domains, varying the agents
appearing in each problem from 2 — 200. From the slopes of
the lines presented we understand that the planner achieves
constant performance regardless of the agents appearing in
those problems. From the intercepts we understand that the
planner scales exponentially as the problems become harder.

From now on we will focus on the four flavours of the
planner and we will directly compare them. Figures 8, 9,
10, 11, 12 portray the results. Mainly two points are inter-
esting in these results. First that the resource curtailment
heuristic contributes even when backjumping is not used.
Hence CB+RC, which in other words is Graphplan’s search

with resource curtailment scales very well. And when CBJ
is combined with RC then the planner is able to achieve
this constant performance. The second interesting obser-
vation is that CBJ without the RC heuristic still performs
very well and in most of our experiments performs equally
to CBJ+RC. This is due to the fact that the results presented
in the above figures cover up to 20 agents hence the over-
head of considering the whole domain of each action is quite
small. However, as the number of agents considered in-
creases we expect CBJ+RC to significantly surpass CBJ in
performance.

Conclusion

In this research we have set the goal of achieving constant
planning performance regardless of the number of agents ap-
pearing in the problem description. In this paper we have
mainly focused on the search space representation used and
the search method with its heuristic applied to achieve our
goal. Through the empirical evaluation we have shown that
the planner’s performance is indeed unaffected by the num-
ber of agents appearing in the problems.

References

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281 —
300.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367 — 421.

Hoffmann, J., and Nebel, B. 2001. The FF planning
system: Fast planning generation through heuristic search.
Journal of Artificial Intelligence Research 14:253 — 302.

Jung, H. 2003. Conflict resolution strategies and their per-
formance models for large-scale multiagent systems. Ph.D.
Dissertation, University of Southern California.

Kalofonos, D.; Karunatillake, N.; Jennings, N. R.; Nor-
man, T. J.; Reed, C.; and Wells, S. 2006. Building agents
that plan and argue in a social context. In Proceedings of
the 1st International Conference on Computational Models
of Argument.

Koehler, J. 1999. Metric planning using planning graphs
- a first investigation. Technical Report 127, Institute for
Computer Science, Albert Ludwigs University.

Long, D., and Fox, M. 1999. Efficient implementation of
the plan graph in STAN. Journal of Artificial Intelligence
Research 10:87 — 115.

Prosser, P. 1993. Hybrid algorithms for the constraint sat-
isfaction problem. Computational Intelligence 9(3):268 —
299.

Shehory, O., and Kraus, S. 1998. Methods for task allo-
cation via agent coalition formation. Artificial Intelligence
101(1-2):165 — 200.

Srivastava, B.; Kambhampati, S.; and Do, M. B. 2001.
Planning the project management way: Efficient planning

by effective integration of causal and resource reasoning in
Realplan. Artificial Intelligence 131(1-2):73 — 134.

ICAPS'08 Multiagent Planning Workshop

